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a b s t r a c t

The thermodynamic interrelationship between thermal and elastic properties at constant pressure has
been studied from the point of view of an empirical linear relation between adiabatic bulk modulus
(BS) and enthalpy increment (DH). A thermodynamic analysis of this linear scaling suggests several pos-
sible simple relations for expressing the isobaric temperature dependence of various thermal quantities.
These approximations invoke one or more thermoelastic quantities such as Grüneisen, and Anderson–
Grüneisen parameters. The proposed BS–DH linear relation together with the auxiliary thermoelastic
relations deduced thereof constitute a self-consistent thermodynamic framework which will be useful
in a critical appraisal of the internal consistency of diverse sources of thermal and elastic property data.
The applicability of this framework is highlighted by modelling the available experimental data on ther-
mal and elastic properties of a-plutonium. In particular, a successful prediction of its molar volume could
be made from the recent experimental data on bulk modulus and assessed information on enthalpy
increment.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

A rigorous thermodynamic description of condensed phases in
terms of pressure (P), volume (V) and temperature (T) coordinates,
namely the equation of state (EoS) suggests that there must exist
certain well-defined interrelationship between thermal and elastic
properties, especially with regard to their temperature and pres-
sure dependencies [1,2]. A good example to illustrate this point
is the relatively temperature independent nature of the Grüneisen
parameter cG, which contains rather implicitly the compensating
or synergetic influence of temperature on different thermal and
elastic quantities, such as volume thermal expansivity (aV), molar
specific heat (CP), molar volume (V) and adiabatic bulk modulus
(BS) [3]. In a similar context, it also emerges from basic thermody-
namic principles that the isothermal pressure dependence of vol-
ume thermal expansivity (oaV/oP)T, is identically related to the
isobaric temperature variation of bulk modulus (oBT/oT)P [2]. In
reality, it is possible to establish different linkages or approxima-
tions connecting the temperature and or pressure dependencies
of different thermodynamic quantities [4–6]. Despite such theoret-
ical possibilities, it is not always easy to decipher the existence of a
particular thermodynamic linkage entirely from first principles [1].
This is so, because the measured thermal and elastic quantities
often take apparently diverse functional representations with
regard to their temperature and pressure variations [1,6]. However,
the experimental data on many thermophysical quantities of
ll rights reserved.
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condensed phases, in particular their pressure and temperature
variations, when taken and analysed together, reveal certain sur-
prisingly simple relations over a reasonable range of temperature
and or pressure [6–14]. Although appearing empirical at first sight,
such experimentally deduced correlations reflect certain underly-
ing physical basis, which if correctly identified and exploited judi-
ciously can lead to a versatile thermodynamic framework that will
help the cause of a self-consistent interpolation cum prediction of
thermal quantities from limited, inhomogeneous or even partial
data sets [10,11]. It is with this intent that we analyse in this study
the thermodynamic implications of a linear relationship connect-
ing molar volume (V) with enthalpy increment (HT � H0) and bulk
modulus under constant pressure conditions. The practical utility
of some of the thermodynamic relations developed from this linear
correlation is demonstrated by taking on a-plutonium as the case
study material.

2. Theoretical development

The starting point of our analysis is the following linear relation
which is essentially identical to the proposed originally by
Anderson [6,12], for characterising the relative variation of
adiabatic bulk modulus (BS) with respect to the corresponding
enthalpy increment (HT � H0) under constant pressure.

BS ¼ B0 � nSðHT � H0Þ: ð1Þ

In the above expression, BS and B0 stand respectively for the
adiabatic bulk modulus values at temperatures T and T0 respec-
tively. T0 is an appropriately chosen reference temperature. HT � H0
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represents the corresponding incremental enthalpy, with H0 being
the enthalpy at the reference temperature. nS is assumed to be a
temperature independent thermoelastic constant as a first order
approximation. A detailed discussion on the physics of this expres-
sion, especially the nearly temperature independent nature of nS is
deferred to another section in this paper. In what follows, the atten-
tion is focused on enlisting some of the important thermodynamic
implications of this approximation. Eq. (1) can be rewritten as
follows.

HT ¼ H0 þ ðB0=nSÞf1� ðBS=B0Þg: ð2Þ

Now, the temperature dependent bulk modulus ratio BS(T)/B0, may
be expressed in terms of the corresponding ratio (VT/V0), of molar
volume by appealing to the concept of temperature independent
adiabatic Anderson–Grüneisen parameter, dS [6,13]. Thus one may
write,

BS=B0 ¼ ðVT=V0Þ�dS : ð3Þ

The Anderson–Grüneisen parameter dS is given by the following
expression [6,13]

dS ¼ �ð1=aV BSÞ � ð@BS=@TÞP ¼ �ð@ ln BS=@ ln VÞP: ð4Þ

It may be remarked at this juncture that Eq. (3) also follows from
the earlier theoretical analysis of Grüneisen [14], nevertheless in
the present study we retain the popular terminology of denoting
dS after Anderson [6,13]. The negative sign on the right-hand side
of Eq. (4) stands for the fact that as the volume increases with
increasing temperature at constant pressure, the bulk modulus
suffers a concomitant decrease, so that the derivative (oln S/oln )P

takes a negative value and dS in turn turns out to be a positive
quantity. Substituting for BS/B0 from Eq. (3) into (2), we obtain
the following relation connecting directly the enthalpy with molar
volume.

HT ¼ H0 þ ðB0=nSÞf1� ðVT=V0Þ�dSg: ð5Þ

It is useful to recall that apart from invoking the validity of Eq. (1),
the only other assumption that has gone into deriving Eq. (5) is the
temperature independent nature of dS. Following the example of
nearly temperature independent thermal Grüneisen parameter, cG

[15], it is often assumed that at high temperatures ðT P hDÞ, dS is
only mildly temperature sensitive and that for all practical purposes,
a nearly temperature independent constant value d0 may be used in
Eq. (5) [6,13]. On the contrary, it is also possible to improve the
technical sophistication of this simple approximation (Eq. (5)), by
taking recourse to some models that characterise the temperature
variation of dS(T) itself. It may be inferred from Eq. (4) that models
for the temperature variation of dS translate effectively into models
that account for the isobaric volume variation of bulk modulus
[6,11,13]. Thus for example, we may invoke the following empirical
relation proposed recently by Jacobs and Oonk for expressing the
isobaric volume dependence of bulk modulus [9].

BS=B0 ¼ expf�d0½ðVT � V0Þ=V0�g; ð6Þ

Using Eq. (6) in Eq. (2), we may derive

HT ¼ H0 þ ðB0=nSÞf1� expð�d0½ðVT � V0Þ=V0�Þg: ð7Þ

Incidentally, it must be mentioned that Eq. (6) presupposes the fact
that in place of temperature independent dS, the composite quantity
(dS/V) is taken as temperature independent [16]. Since the argument
inside the exponential function on the right-hand side of Eq. (7) is
rather small, that is, d0[(VT � V0)/V0]� 1, we may approximate
the exponential function as a series expansion in (VT � V0/V0) and
retaining only the linear term in such an expansion, we obtain after
some algebraic manipulation, the following linear correlation be-
tween enthalpy and molar volume.
HT ¼ H0 þ ðB0d0=V0nSÞðVT � V0Þ: ð8Þ

It is clear that Eq. (8) is a less sophisticated approximation than Eq.
(7); nevertheless it is a simple and useful one.

Alternately, one may also adopt the Chopelas and Boehler
approximation for expressing the volume dependence of dS [17].
In this approximation, a composite quantity A, defined by the fol-
lowing expression

A ¼ ð1þ dSÞ=VT ¼ ð1þ d0Þ=V0; ð9Þ

is taken to be temperature independent. That is in place of (dS/V),
the composite quantity (1 + dS)/VT is assumed to be temperature
independent. With this assumption, the corresponding expression
for the isobaric volume dependence of bulk modulus takes the fol-
lowing form.

BS=B0 ¼ ðVT=V0Þ expf�AðVT � V0Þg: ð10Þ

Substituting for BS/B0 from Eq. (10) in (2), we get the following
fourth approximation connecting enthalpy variation with volume.

HT ¼ H0 þ ðB0=nSÞ � f1� ðVT=V0Þ exp½�AðVT � V0Þ�g: ð11Þ
2.1. Estimation of thermoelastic constants dS and nS from standard
values of reference temperature thermal properties

The expressions given in (5), (7), (8), and (11) provide for a
ready estimation of enthalpy from molar volume data, if values
of B0, V0, nS and d0 are known. Of these, B0 and V0 are standard
quantities corresponding to the reference temperature T0. Reliable
estimates these quantities may be considered as readily available
input for many materials. Additionally, the values of thermoelastic
constants nS and d0 need to be known at the reference temperature.
As evident from the definition of dS vide Eq. (4), d0 is determined, if
the temperature derivative of bulk modulus (oBS/oT)0 and volume
thermal expansivity (a0) at the reference temperature (T0) are
known. For a good number of materials, the bulk modulus data
may be available over a small range of temperature in the low to
moderate temperature region. But in general, the extensive avail-
ability of temperature dependent elastic property data is still
rather scarce for many solids of practical interest. If information
regarding (oBS/oT)0 is lacking for a solid of specific interest, we
may employ the following relation suggested by Ledbetter for
obtaining a first order estimate of this quantity [18].

ð@BS=@TÞP ¼ �ðaV BSÞdS ¼ �ðCPcG=VÞdS ¼ �3RcGðcG þ 1Þ=V : ð12Þ

The above relation gives basically the high temperature constant
limit value of (oBS/oT)P. It is useful to recall that cG is the Grüneisen
parameter. Thus after defining all the quantities, the only remaining
thermoelastic parameter that remains to be explained in detail is nS.
This point is addressed in the following section.

3. Physical meaning of nS

Upon differentiating Eq. (1) with respect to temperature, we
get,

ð@BS=@TÞP ¼ �nSCP : ð13Þ

Now, by substituting for (oBS/oT)P in the above expression in terms
of dS from Eq. (4) and in addition, employing the following defini-
tion of the thermal Grüneisen parameter cG [3,6]

cG ¼ aV BSV=CP; ð14Þ

in effectively replacing the product of thermal expansivity and bulk
modulus (aVBS), we finally arrive at the following expression for nS

nS ¼ cGdS=V : ð15Þ
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Fig. 1. The linear relationship between adiabatic bulk modulus BS and enthalpy
increment DH, for a-plutonium, as suggested by Eq. (1) is graphically
demonstrated.
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Note that in the above formulation of nS, we have not assumed the
temperature independence of either cG or dS. In fact, their individual
temperature sensitivities are implicitly subsumed or compensated
in the overall nearly temperature independent nature of nS. In this
sense, nS represents a higher order thermoelastic quantity. It must
further be added that in general the temperature sensitivities of
cG and dS in themselves are generally small, and besides are formi-
dable issues to be resolved on a rigorous thermodynamic basis.
Nevertheless, in proposing an empirical linear scaling relation be-
tween two thermal properties, such as Eq. (1), the intricacies of
the temperature variations of two complex thermoelastic parame-
ters like cG and dS are adequately taken care of. In hindsight, this
is one of the remarkable advantages of the linear scaling approxi-
mation given in Eq. (1).

As the first simplifying step, the temperature dependence of
both cG and dS may be set to zero [15,19]. Such an approximation
may be valid only at high temperatures (T > hD). Under such case,
one can estimate nS as

n0 ¼ c0d0=V0: ð16Þ

The other important point to note from Eq. (16) is that by substitut-
ing for n0 = c0d0/V0 in Eq. (8), we can further simplify the enthalpy
dependence of molar volume in the following manner.

HT ¼ H0 þ ðB0=c0ÞðVT � V0Þ: ð17Þ

The above linear approximation suggests that (oH/oV)P = (BS/cG), is
another nearly temperature independent composite quantity. In
what follows, we present an illustrative application of the thermo-
dynamic framework developed in this study by estimating the ther-
mal properties of a-plutonium.

4. A case study on a-plutonium

A study on a-plutonium is interesting on two counts. In the
first, it is rather difficult to carry out extensive experimentation
on plutonium and its alloys on account of its highly radioactive
and self-damaging nature [20]. Secondly, a fundamental under-
standing of the physics of plutonium is indeed a challenging task,
as it is one of a delicate balance between a typically delocalised
versus localised descriptions of the dynamics of bonding electrons
[21]. It is believed that the physicochemical characteristics of a-Pu,
the first among the six allotropes, must in someway derive from
this intricate physics. Not withstanding the experimental difficul-
ties, a fair amount of experimental information on thermal and
physical properties exist for a-plutonium [22–33]. Thanks to the
availability of fairly pure a-Pu with reasonable mass in the recent
past, some of its physical properties have been redetermined [34–
37]. Recently, Ledbetter et al. [37] have accurately determined the
temperature variation of the elastic properties of a-Pu by resonant
ultrasound spectroscopy in the temperature range of 18 to about
385 K, thus offering a complete set of values for most part of the
existence domain of a-Pu. The interesting part of their work is
the finding that not withstanding the subtleties of f-electron phys-
ics, the measured temperature dependence of the adiabatic bulk
modulus can be adequately characterised by the classical Varshni’s
model, as given below [38].

BSðTÞ ¼ BSð0Þ � s=½expðhE=TÞ � 1�: ð18Þ

In the above expression, s is a temperature independent constant
and hE is the characteristic Einstein temperature. Strictly speaking
they are to be treated as fit-constants. However, as shown by Led-
better [18], the above model may be derived by assuming the Ein-
stein single oscillator model of specific heat, besides implicitly
invoking the ansatz that (oBS/oT)P = �nSCP. In fact, it can be shown
that within the spirit of the linear correlation between enthalpy
and bulk modulus (Eq. (1)), the constant s is given by the relation
[18]

s ¼ ð3RhEÞnS; ð19Þ

and the slope (oBS/oT)P by the expression

ð@BS=@TÞP ¼ �fs=hE � 1=3RgCP: ð20Þ

CP is given by the Einstein approximation [3]

CP ¼ 3RðhE=TÞ2 expðhE=TÞ=½expðhE=TÞ � 1�2: ð21Þ

In Fig. 1, we present the linear correlation observed between the
experimental values of enthalpy [39] and adiabatic bulk modulus
[37]. The slope nS, of the best-fit line is found to be 2.3 �
106 mol m�3. This experimental value for nS compares rather well
with the theoretically estimated value of 2.85 � 106 mol m�3. At
this point, it is instructive to make a mention of the dimension
and approximate magnitude of nS. From Eq. (15), it emerges that
nS, shares an inverse dimensional relationship with molar volume
V, since both cG and dS are dimensionless quantities. If volume is ex-
pressed on a molar basis, then nS takes the dimension of mol m�3.
Further, if we set the value of the composite product cG � dS to be
within the range 26–30, which is probable for a-plutonium from
the point of view of its current thermophysical property estimates,
then the magnitude of nS is approximately about 30/V. In the
present study the theoretical estimate of nS, is obtained from
Eq. (19) using Varshni’s model fit parameters, namely s = 11.3 GPa
and hE = 158.8 K. In fact, using this latter theoretical value of
2.85 � 106 mol m�3 for nS, and making a back calculation of enthal-
py in terms of experimental BS data using Eq. (1), it is found that the
calculated values are within ±5% of the assessed experimental data
[39]. This is reflected in Fig. 2, where the original experimental and
back calculated enthalpy values are compared for a-plutonium.
Although, we could not estimate the uncertainty associated with
the theoretical estimate of the thermoelastic constant nS (the corre-
sponding uncertainty in the empirical fit parameters s and hE are not
known), it appears that experimental enthalpy values are generally
no better than ±5% level of accuracy [30]. As a further cross check,
one can also estimate nS, using the definition given in Eq. (16) in
terms of c0, d0 and V0. Taking the required data for a-plutonium
(c0 = 2.87 (extrapolated), d0 = 8.91, V0 = 11.712 � 10�06 m3 mol�1)
from the theoretical analysis of Wallace [40], a value of 2.18 �
1006 has been deduced for n0. It is again noteworthy that this
value is fairly close to 2.3 � 1006, that is obtained from the slope
of the straight-line fit that is given in Fig. 1. In summary, it may
be noted that notwithstanding the uncertainties inherent of the
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experimental data, there is a genuine linear correlation between
bulk modulus and enthalpy (Eq. (1)) for a-plutonium.

In the next step, we attempt to estimate the temperature vari-
ation of molar volume using experimental enthalpy data. Among
various approximations developed in this study, we chose the sim-
plest of approximations given by Eq. (17). The values of
V0 = 11.712 � 10�06 m3 mol�1, c0 = 2.87 and B0 = 54.4 GPa, needed
for this purpose are taken respectively from the tabulation of Wal-
lace [40], who in turn has considered in his analysis the extensive
compilation of the experimental data by Wick [26], and Ledbetter
et al. [37]. In Fig. 3, the estimated and experimental values of molar
volume as a function of temperature are compared. As can be seen
from this figure, the estimated values are only slightly higher than
the experimental estimates. In view of the uncertainty that is
invariably associated with lattice parameter measurements, and
also considering the fact that Eq. (17) is basically a linear approx-
imation, this level of agreement can be considered as good.
V (10-6 m3 ) = 0.0528 (HT - H0 / kJ mol -1) + 11.712
R2 = 1
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Fig. 4. The linear approximation between molar volume and enthalpy increment
for a-plutonium, as suggested by Eq. (17) is graphically demonstrated.
5. Discussion

A study on the interrelationship between thermophysical quan-
tities is in fact not new. In all probability, the early and a well-
noted thermodynamic treatment of the interrelationship between
thermal and elastic quantities had been provided by Grüneisen
himself [14]. By proposing a temperature independent parameter
cG (Eq. (14)), he had issued a compact statement with regard to
the compensating influence of temperature on (aV/CP) vis a vis
the product (BSV). In a recent study, we further probed this topic
of interrelationship between thermal and elastic properties from
the standpoint of one of the Grüneisen hypotheses, namely the ra-
tio k = aV/CP, is temperature insensitive [10,41]. When viewed in a
broader perspective, this assumption translates into following rela-
tion between molar volume and enthalpy at constant pressure
[10].

VT ¼ V0 expðk0DHÞ: ð22Þ

k0 is the value of the aV/CP ratio at the reference temperature [10]. If
in the above approximation, we further assume that exp
ðk0DHÞ � ð1þ k0DHÞÞ, then we recover a linear relation connecting
VT with DH.

That is,

VT ¼ V0 þ k0V0DH: ð23Þ

It is instructive to note the similarity between Eqs. (23) and (17). In
other words, the present linear approximation can be traced to
Grüneisen’s exponential relationship (Eq. (22)). In Fig. 4, the graph-
ical depiction of the linear correlation between enthalpy and molar
volume in case of a-plutonium is portrayed.

It emerges from the comparison of these two linear relations
(Eqs. (17) and (23)) that k0V0 ¼ c0=B0, which otherwise also fol-
lows from the definition of c0, as given in Eq. (14). By making
use of this fact in the thermodynamic definition of n0 = c0d0/V0,
we obtain

n0 ¼ k0d0B0: ð24Þ

In view of the above, Eq. (1) may now be rewritten in the following
equivalent form.

BS ¼ B0ð1� k0d0DHÞ: ð25Þ

The other important point with regard to the applicability of the
approximations developed in this study is concerned with the true
constancy of various thermoelastic parameters invoked for the pur-
pose. As a general remark, it may be said that all thermoelastic
quantities are in principle sensitive to temperature variation and
a rigorous theoretical quantification of this dependency is indeed
difficult. It is generally found that for many solids, and for temper-
atures exceeding the Debye characteristic temperature, T� hD, the
temperature variation of thermoelastic quantities may be consid-
ered as negligible. It is in this light, that the proposition of a second
order thermoelastic parameter like nS, which implicitly incorporates
the temperature dependence of primary or first order thermoelastic
quantities, such as cG, k, and dS assumes practical significance. As
amply demonstrated by the results obtained for a-plutonium, the
self-consistency of approximations suggested in this study is quite
obvious. In this sense, the invocation of a constant nS can offer fairly
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reliable predictions for molar volume from bulk modulus data or
vice versa. Further, it may also be said that in proposing empirical
correlations like Eqs. (1), (17), (23) involving measurable thermody-
namic quantities, a consistent description of the interrelationship
between them has also been enabled. This fact will be of use in ana-
lysing the internal thermodynamic consistency among diverse data
sets. The other point that must be kept in mind while using the
approximations derived in this study is with regard to the onset
of phase transformations. For obvious reasons, the various thermo-
dynamic quantities suffer continuous or discontinuous changes in
the domain of phase transformations and as a result of this, the
temperature independent character of various thermoelastic
parameters is lost in the phase transition region. In view of this,
the validity of the thermoelastic relations suggested in this study
is lost, when the system under study evinces phase instability.

6. Conclusions

A comprehensive thermodynamic analysis of the linear isobaric
relationship between bulk modulus and enthalpy has been pre-
sented. By invoking a hierarchy of approximations for representing
the volume dependence of bulk modulus, a set of self-consistent
relations connecting molar volume and enthalpy increment has
been deduced. The applicability of the thermodynamic framework
derived in this study has been demonstrated in case of a-pluto-
nium by successfully predicting its molar volume as a function of
temperature using enthalpy data.
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